Modal-based phase retrieval using Gaussian radial basis functions
نویسندگان
چکیده
منابع مشابه
Stable Computations with Gaussian Radial Basis Functions
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...
متن کاملGaussian Radial Basis Functions for Simulation Metamodeling
This paper presents a novel approach for developing simulation metamodels using Gaussian radial basis functions. This approach is based on some recently developed mathematical results for radial basis functions. It is systematic, explicitly controls the underfitting and overfitting tradeoff, and uses a fast computational algorithm that requires minimal human involvement. This approach is illust...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملEvolutionary q-Gaussian Radial Basis Functions for Binary-Classification
This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop+ algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with e...
متن کاملStable Computations with Gaussian Radial Basis Functions in 2-d
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Optical Society of America A
سال: 2018
ISSN: 1084-7529,1520-8532
DOI: 10.1364/josaa.35.001233